Introduction to Statistics

Chapter 1

§ 1.1

An Overview of Statistics

Data and Statistics

Data consists of information coming from observations, counts, measurements, or responses.

Statistics is the science of collecting, organizing, analyzing, and interpreting data in order to make decisions.

A population is the collection of all outcomes, responses, measurement, or counts that are of interest.

A sample is a subset of a population.
Populations & Samples

Example:
In a recent survey, 250 college students at Union College were asked if they smoked cigarettes regularly. 35 of the students said yes. Identify the population and the sample.

Parameters & Statistics

A **parameter** is a numerical description of a **population** characteristic.

A **statistic** is a numerical description of a **sample** characteristic.

Parameter \[\rightarrow\] Population

Statistic \[\rightarrow\] Sample

Parameters & Statistics

Example:
Decide whether the numerical value describes a population parameter or a sample statistic.

a.) A recent survey of a sample of 450 college students reported that the average weekly income for students is $325. Because the average of $325 is based on a sample, this is a sample statistic.

b.) The average weekly income for all students is $405. Because the average of $405 is based on a population, this is a population parameter.
Branches of Statistics

The study of statistics has two major branches: descriptive statistics and inferential statistics.

- **Descriptive statistics**
 - Involves the organization, summarization, and display of data.

- **Inferential statistics**
 - Involves using a sample to draw conclusions about a population.

Descriptive and Inferential Statistics

Example:
In a recent study, volunteers who had less than 6 hours of sleep were four times more likely to answer incorrectly on a science test than were participants who had at least 8 hours of sleep. Decide which part is the descriptive statistic and what conclusion might be drawn using inferential statistics.

The statement “four times more likely to answer incorrectly” is a descriptive statistic. An inference drawn from the sample is that all individuals sleeping less than 6 hours are more likely to answer science question incorrectly than individuals who sleep at least 8 hours.

§ 1.2
Data Classification
Types of Data

Data sets can consist of two types of data: qualitative data and quantitative data.

- **Qualitative Data**
 - Consists of attributes, labels, or nonnumerical entries.

- **Quantitative Data**
 - Consists of numerical measurements or counts.

Qualitative and Quantitative Data

Example:
The grade point averages of five students are listed in the table. Which data are qualitative data and which are quantitative data?

<table>
<thead>
<tr>
<th>Student</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sally</td>
<td>3.22</td>
</tr>
<tr>
<td>Bob</td>
<td>3.98</td>
</tr>
<tr>
<td>Cindy</td>
<td>2.75</td>
</tr>
<tr>
<td>Mark</td>
<td>2.24</td>
</tr>
<tr>
<td>Kathy</td>
<td>3.84</td>
</tr>
</tbody>
</table>

Levels of Measurement

The level of measurement determines which statistical calculations are meaningful. The four levels of measurement are: nominal, ordinal, interval, and ratio.
Nominal Level of Measurement

Data at the nominal level of measurement are qualitative only.

- **Nominal**
 - Levels of Measurement
 - Calculated using names, labels, or qualities. No mathematical computations can be made at this level.
 - Colors in the US flag
 - Names of students in your class
 - Textbooks you are using this semester

Ordinal Level of Measurement

Data at the ordinal level of measurement are qualitative or quantitative.

- **Ordinal**
 - Levels of Measurement
 - Arranged in order, but differences between data entries are not meaningful.
 - Class standings: freshman, sophomore, junior, senior
 - Numbers on the back of each player’s shirt
 - Top 50 songs played on the radio

Interval Level of Measurement

Data at the interval level of measurement are quantitative. A zero entry simply represents a position on a scale; the entry is not an inherent zero.

- **Interval**
 - Levels of Measurement
 - Arranged in order, the differences between data entries can be calculated.
 - Temperatures
 - Years on a timeline
 - Atlanta Braves World Series victories
Data at the ratio level of measurement are similar to the interval level, but a zero entry is meaningful.

- Ratio

<table>
<thead>
<tr>
<th>Levels of Measurement</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ages</td>
<td></td>
</tr>
<tr>
<td>Grade point averages</td>
<td></td>
</tr>
<tr>
<td>Weights</td>
<td></td>
</tr>
</tbody>
</table>

A ratio of two data values can be expressed as a ratio.

A ratio of two data values can be formed so one data value can be expressed as a ratio.

Summary of Levels of Measurement

<table>
<thead>
<tr>
<th>Level of measurement</th>
<th>Put data in categories</th>
<th>Arrange data in order</th>
<th>Subtract data values</th>
<th>Determine if one data value is a multiple of another</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Ordinal</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Interval</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ratio</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

§ 1.3

Experimental Design
Designing a Statistical Study

GUIDELINES
1. Identify the variable(s) of interest (the focus) and the population of the study.
2. Develop a detailed plan for collecting data. If you use a sample, make sure the sample is representative of the population.
3. Collect the data.
4. Describe the data.
5. Interpret the data and make decisions about the population using inferential statistics.
6. Identify any possible errors.

Methods of Data Collection

In an observational study, a researcher observes and measures characteristics of interest of part of a population.

In an experiment, a treatment is applied to part of a population, and responses are observed.

A simulation is the use of a mathematical or physical model to reproduce the conditions of a situation or process.

A survey is an investigation of one or more characteristics of a population.

- A census is a measurement of an entire population.
- A sampling is a measurement of part of a population.

Stratified Samples

A stratified sample has members from each segment of a population. This ensures that each segment from the population is represented.

Freshmen Sophomores Juniors Seniors
Cluster Samples

A cluster sample has all members from randomly selected segments of a population. This is used when the population falls into naturally occurring subgroups.

![Cluster Sample Diagram]

Every fourth member is chosen.

Systematic Samples

A systematic sample is a sample in which each member of the population is assigned a number. A starting number is randomly selected and sample members are selected at regular intervals.

Every fourth member is chosen.

Convenience Samples

A convenience sample consists only of available members of the population.

Example:
You are doing a study to determine the number of years of education each teacher at your college has. Identify the sampling technique used if you select the samples listed.

1) You randomly select two different departments and survey each teacher in those departments.

2) You select only the teachers you currently have this semester.

3) You divide the teachers up according to their department and then choose and survey some teachers in each department.
Identifying the Sampling Technique

Example continued:
You are doing a study to determine the number of years of education each teacher at your college has. Identify the sampling technique used if you select the samples listed.

1. This is a cluster sample because each department is a naturally occurring subdivision.

2. This is a convenience sample because you are using the teachers that are readily available to you.

3. This is a stratified sample because the teachers are divided by department and some from each department are randomly selected.