Chapter Goals

After completing this chapter, you should be able to:
- Describe key data collection methods
- Know key definitions:
 - Population vs. Sample
 - Primary vs. Secondary data types
 - Qualitative vs. Quantitative data
 - Time Series vs. Cross-Sectional data
- Explain the difference between descriptive and inferential statistics
- Describe different sampling methods

Tools of Business Statistics

- **Descriptive statistics**
 - Collecting, presenting, and describing data

- **Inferential statistics**
 - Drawing conclusions and/or making decisions concerning a population based only on sample data
Descriptive Statistics

- **Collect data**
 - e.g. Survey, Observation, Experiments

- **Present data**
 - e.g. Charts and graphs

- **Characterize data**
 - e.g. Sample mean $\bar{x} = \frac{\sum x}{n}$

Data Sources

- **Primary**
 - Data Collection
 - Observation
 - Experimentation
 - Survey

- **Secondary**
 - Data Compilation
 - Print or Electronic

Survey Design Steps

- Define the issue
 - what are the purpose and objectives of the survey?

- Define the population of interest

- Formulate survey questions
 - make questions clear and unambiguous
 - use universally-accepted definitions
 - limit the number of questions
Survey Design Steps

(continued)

- Pre-test the survey
 - pilot test with a small group of participants
 - assess clarity and length
- Determine the sample size and sampling method
- Select Sample and administer the survey

Types of Questions

- Closed-end Questions
 - Select from a short list of defined choices

 Example: Major: __business __liberal arts
 __science __other

- Open-end Questions
 - Respondents are free to respond with any value, words, or statement

 Example: What did you like best about this course?

- Demographic Questions
 - Questions about the respondents’ personal characteristics

 Example: Gender: __Female __Male

Populations and Samples

- A Population is the set of all items or individuals of interest

 Examples: All likely voters in the next election
 All parts produced today
 All sales receipts for November

- A Sample is a subset of the population

 Examples: 1000 voters selected at random for interview
 A few parts selected for destructive testing
 Every 100th receipt selected for audit
Population vs. Sample

Population

Sample

Why Sample?

- Less time consuming than a census
- Less costly to administer than a census
- It is possible to obtain statistical results of a sufficiently high precision based on samples.

Sampling Techniques

Samples

Non-Probability Samples

Judgement

Convenience

Probability Samples

Simple Random

Systematic

Stratified

Cluster
Statistical Sampling
- Items of the sample are chosen based on known or calculable probabilities

Probability Samples
- Simple Random
- Stratified
- Systematic
- Cluster

Simple Random Samples
- Every individual or item from the population has an equal chance of being selected
- Selection may be with replacement or without replacement
- Samples can be obtained from a table of random numbers or computer random number generators

Stratified Samples
- Population divided into subgroups (called strata) according to some common characteristic
- Simple random sample selected from each subgroup
- Samples from subgroups are combined into one
Systematic Samples

- Decide on sample size: \(n \)
- Divide frame of \(N \) individuals into groups of \(k \) individuals: \(k = \frac{N}{n} \)
- Randomly select one individual from the 1st group
- Select every \(k^{th} \) individual thereafter

\[N = 64 \]
\[n = 8 \]
\[k = 8 \]

Cluster Samples

- Population is divided into several "clusters," each representative of the population
- A simple random sample of clusters is selected
 - All items in the selected clusters can be used, or items can be chosen from a cluster using another probability sampling technique

Population divided into 16 clusters.

Key Definitions

- **A population** is the entire collection of things under consideration
- **A parameter** is a summary measure computed to describe a characteristic of the population
- **A sample** is a portion of the population selected for analysis
- **A statistic** is a summary measure computed to describe a characteristic of the sample
Inferential Statistics

- Making statements about a population by examining sample results

Sample statistics → Inference → Population parameters

Sample (known) → Inference (unknown, but can be estimated from sample evidence) → Population

Inferential Statistics

- Estimation
 - e.g.: Estimate the population mean weight using the sample mean weight

- Hypothesis Testing
 - e.g.: Use sample evidence to test the claim that the population mean weight is 120 pounds

Data Types

- Qualitative (Categorical)
 - Examples: Marital Status, Political Party, Eye Color

- Quantitative (Numerical)
 - Discrete
 - Examples: Number of Children, Defects per hour
 - Continuous
 - Examples: Weight, Voltage (Measured characteristics)
Data Types

- **Time Series Data**
 - Ordered data values observed over time

- **Cross Section Data**
 - Data values observed at a fixed point in time

Time Series Data

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>435</td>
<td>460</td>
<td>475</td>
<td>490</td>
</tr>
<tr>
<td>Boston</td>
<td>320</td>
<td>345</td>
<td>375</td>
<td>395</td>
</tr>
<tr>
<td>Cleveland</td>
<td>405</td>
<td>390</td>
<td>410</td>
<td>395</td>
</tr>
<tr>
<td>Denver</td>
<td>260</td>
<td>270</td>
<td>285</td>
<td>280</td>
</tr>
</tbody>
</table>

Cross Section Data

Data Measurement Levels

- **Ratio/Interval Data**
 - Highest Level
 - Complete Analysis
- **Ordinal Data**
 - Higher Level
 - Mid-level Analysis
- **Nominal Data**
 - Lowest Level
 - Basic Analysis
Chapter Summary

- Reviewed key data collection methods
- Introduced key definitions:
 - Population vs. Sample
 - Primary vs. Secondary data types
 - Qualitative vs. Qualitative data
 - Time Series vs. Cross-Sectional data
- Examined descriptive vs. inferential statistics
- Described different sampling techniques
- Reviewed data types and measurement levels